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Abstract

In conventional chromatography, a solute is usually viewed to be longitudinally transported only in the mobile phase,
remaining longitudinally motionless in the stationary phase. In counter-current chromatography, both phases undergo intense
mixing in the variable force field of a coil planet centrifuge and longitudinal dispersion of matter in the stationary phase is
not to be excluded. To take into account longitudinal mixing in both phases, a cell model of chromatographic process is
proposed in which the number of perfectly mixed cellsn is determined by the rates of mixing in stationary (D ) and mobileS

(D ) phases by the equationn 5 LF /(2A D ) /(11 S (l2 1)) with l5K D /D (F, L, A and K are the mobile phasem c m f D S m c D

flow-rate, column length, column cross-section and distribution ratio, respectively). This equation has been derived by
comparing the discontinuous cell model with continuous diffusion assuming equilibrium conditions. Parameter determination
and their relationships are discussed.
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction This paper is an attempt to apply approaches used
in chemical engineering for modelling of mass

Counter-current chromatography (CCC) is a new transfer processes [3,4], in particular solvent ex-
technology for analytical and preparative scale sepa- traction columns [5], to simulate and scale-up the
rations of chemical and pharmaceutical substances; it chromatographic process.
combines the features of liquid–liquid extraction and The chromatographic column is considered to be a
partition chromatography [1,2]. For scaling up, op- very high (long) extraction column with an extreme-
timisation of device design and operation parameters, ly high lengthL to diameterd ratio (L /d 4 100),
it is necessary to describe the chromatographic operating under special conditions: one of the con-
column hydrodynamics and non-steady state mass tacting phases is held stationary and mass transfer
transfer between the stationary and mobile phases. takes place under non-steady state conditions. In

extraction columns, light and heavy phases move
countercurrently through a vertical apparatus and*Fax: 17-095-952-2341.

E-mail address: ko-artak@aha.ru(A.E. Kostanian). they operate under steady-state conditions.
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In conventional chromatography, it is assumed
that a solute is transported along the column only
while it is in the mobile phase and remains longitudi-
nally motionless in the stationary phase. In CCC,
because of the lack of a solid support, both liquids Fig. 1. Schematic diagram of the ideally mixed cells model.
undergo intense mixing in the variable force field of
a coil planet centrifuge (mixing and settling zones in
the coils [6] and wave mixing [1,7] have been cated interaction of different mechanisms: non-uni-
observed) and the axial transport of a solute in the form velocity profile of mobile phase flow, turbu-
stationary phase cannot be ignored. Thus, in CCC the lence and molecular diffusion in both phases. Two
chromatographic behaviour is influenced by longi- simplified model schemas: 1—discrete (staged)-cell
tudinal mixing in stationary and mobile phases and model (a cascade of well mixed equal-size vessels)
mass transfer between them. In the modelling and and, 2—continuous-diffusion model, are shown in
scale up of CCC there is a need for treating as Figs. 1 and 2. According to the first model, the axial
separate phenomena the contributions of dispersion mixing in the chromatographic column is character-
of matter in stationary and mobile phases. ised by one parameter—number of perfectly (ideal-

To predict residence time (or the elution profile) of ly) mixed cellsn, whereas the second model has two
a solute in a chromatographic column, it is essential parameters and takes into account separately the rate
for there to be a quantitative analysis (or mathemati- of mixing in the phases in the form of effective
cal model) of longitudinal mixing and mass transfer. longitudinal diffusion coefficients (D in mobilem

Furthermore, dispersion phenomenon must be repre- phase, andD in stationary phase) defined to involveS

sented by means of a set of equations. A large the effects of non-uniform velocity profile, turbu-
number of empirical functions have been proposed lence and molecular diffusion. Thus, the second
and used for the description and interpretation of model formally relies on the laws of one-dimensional
chromatographic peaks. Recently, about 90 of these convective diffusion adapted to the flow in the
functions have been reviewed [8]. Since the parame- chromatographic column. In the cell model, uniform
ters of these mathematical models are not directly properties in all parts of the enclosure of each cell
related to the characteristic features of a real chro- are assumed which means that: (1) both phases are
matographic process, their practical application in uniformly distributed in a cell volume; (2) the
the process simulation and scale up is problematic. It concentration of a solute within each phase in a cell
is well known that for the reliable simulation and is uniform; (3) the distribution of a solute between
scale up of a mass transfer process the mathematical the phases in a cell is determined by the distribution
model applied is to be able to reflect the actual ratio (partition coefficient)K , interphase massD

physical (or physical-chemical) picture of the pro- transfer rate and the ratio of phase volumes; (4) the
cess. If the model replicates, even in the simplified mobile phase flows continuously through a cascade
form, the mechanism of the phenomenon, it can be of cells and its residence time distribution in each
used to simulate the process and analyse the effects cell is described by an exponential function (like for
of different process variables. In our case, as men- any ideally mixed tank). It is important to stress that
tioned above, the spreading of the injected solute in when the rate of longitudinal mixing is low (and that
the chromatographic column is caused by the axial is the case, forL /d4100), simulations based on
mixing in the phases and the mass transfer between
them; in addition, extremely high ratio of column
length to diameter allows one-dimensional models to
be used.

2 . Description of the models

Longitudinal dispersion takes place by a compli- Fig. 2. The schema of the diffusion longitudinal mixing model.
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idiscrete and continuous models give practically x ni i i21] ]]identical results, supposed correct relationship be- 5 p t exp(2npt) (3)x̄ (i 2 1)!
tween models parameters is used [3–5].

In this paper, we consider the equilibrium assump- for the last cell (i5n):
tion: the equilibrium distribution of the passing nx nn n n21component between the phases is reached in perfect-] ]]]5 p t exp(2npt) (4)x̄ (n 2 1)!ly mixed cells of a staged model and in any cross-
section of a continuous model. This assumption with
means that the mass transfer is fast enough compared 1
to the other changes occurring so that the process is ]]]]p 5 (5)12 S 1 S Kf f Dgoverned only by the axial dispersion of solute in the
stationary and mobile phases and the distribution ¯where x 5Q /V is the mean concentration in thec

ratio in the solvent system employed. column, t 5tF /V 5t /t is the dimensionless time,c c

Further assumptions: the distribution ratio t 5V /F is the mean residence time of the mobilec c

phase in the column when it is filled with onlyK 5 y /x 5 constantD mobile phase (S 50).f

Eq. (4) represents the residence (in chromato-where x and y are concentrations in mobile and
graphic terms—retention) time distribution of astationary phases, respectively.
solute in chromatographic column on the basis ofThe retained volume of stationary phaseV isS

cell model under equilibrium conditions. Let usconstant in any cross-section of the column, or when
analyse this distribution (Eq. (4)).it is expressed as a fraction of column volumeS :f

From Eq. (4), the position of the peak maximum
S 5V /(V 1V )5V /V 5 constantf S S m S c on the time axis can be established: In non-dimen-

sional form:where V and V are the volumes of mobile andm S

stationary phases in the chromatographic column, n 2 1
]]t 5 (6)maxrespectively, andV 5V 1V is the column volume.c S m np

or in real time

V V3 . Analysis of the models n 2 1 n 2 1c c
]]] ]]]t 5 5 (12 S 1 S K )max f f DF np n F

3 .1. Cell model 5t (7)R

For K 50DMass balance equation for the currenti–cell is:
Vn 21 cV dx V dym i S i ]]]t (K 50)5t 5 (12 S ) (8)max D m f]] ]]1 5F(x 2 x ) (1) n Fi21 in dt n dt

In terms of chromatography,t is the total retentionRwith i51, 2, . . . ,n, and whereF is the volumetric
time, andt is the time spent in the mobile phase.mflow-rate of mobile phase andt is the time.
Eqs. (7) and (8) differ from equations usually usedThe solution of the set ofn equations (1) with
in chromatography by factor (n 21) /n. For n →`,boundary and initial conditions (2):
the considered equations become absolutely identi-
cal.nQ

]]]]]x 5 0. t 5 0: x 5 ; x 5 x0 1 2 3 From Eqs. (7) and (8) follows the commonV (12 S 1 S K )c f f D
relationship between the total time spent in the

5 ? ? ? 5 x 5 0 (2)n column and the times spent in individual phases:
(the inlet concentration of the mobile phase flow is Sf

]]t 5t 1t K 5t 1t (9)zero; att 5 0, the amountQ of the solute in the R m m D m S1–Sfsample is impulsively injected into the first ideally
mixed cell) for anyi-cell is obtained as: Rewriting Eq. (7) in terms of volume gives:



42 A.E. Kostanian / J. Chromatogr. A 973 (2002) 39–46

`
3x (11 n)tn 21 11 nn c2]] ] ]] ¯]]]V 5 V 2V 1V K M 5Et dt 5 , m 5 x (16)s dR c S S D 2 2 2 2¯n x np np

0
n 21
]]5 V 1K V (10)s dm D S (n 11)(n 1 2)n ]]]]M 5 , m3 2 3 3n pFor n →`, this equation reduces to the fundamental

4equation of partition chromatography: x̄t (n 1 1)(n 12)c
]]]]]5 (17)2 3n pV 5V 1K V (11)R m D S

First moment defines the mean residence time: inFor K 51, Eq. (7) reduces toD ¯non-dimensional form,t 5 1/p, and in real time
Vn 2 1 units:c

]]]t (K 51)5t (K 51)5 (12)max D R D n F m V t1 c c¯ ] ] ]t5 5 12 S 1K S 5 (18)s df D fm F pIt must be pointed out that the time of peak maxi- 0

mum, t , and the mean residence (or retention)max As can be seen from Eqs. (7) and (18) forn →`,¯time of a solute in the column (define it ast ) are in
¯t 5 t.Rgeneral different quantities. The mean residence time

The shape of the distribution curve can be char-can be calculated from the chromatographic curve as
acterised by central moments: the distribution widthits first moment. Thekth moment of the distribution 2is defined by second central moment, variances ,function (4) in dimensionless (normalised),M , andk the asymmetry—by third central momenth. Fromdimensional,m form is defined as:k Eqs. (14)–(18), we obtain the expressions for these

` ` quantities as follows in real time:xnk k] `M 5Et dt and m 5Et x dtk k nx̄ 2m m1 2 12 20 0 ] ¯ ] ]s 5 E(t 2 t ) x dt 5 2S Dn nm m m0 0 0
0The expressions for the moments can be evaluated

2by integration either of distribution function (4) or V c 2]]5 12 S 1K S (19)s dthe equations (1). The second way is easier: term-by- 2 f D fnF
term integration over 0#t #` by taking into

`
account conditions (2) transforms the set of differen- 1 3] ¯h 5 E(t 2 t ) x dttial equations (4) to the set of algebraic equations n nm0

0containing the moments instead of concentrations.
3m m m mThis set of algebraic equations is easy to solve to 3 2 1 1

] ]] ]5 2 3 1 2S Dfind the moments of outlet distributing function. The m m m m0 0 0 0

following expressions for the moments have been 32V c 3obtained: ]]5 12 S 1K S (20)s d2 3 f D fn F
` `

x VQ Q and in non-dimensional formn c
] ] ]]M 5E dt 5 1, m 5Ex dt 5 50 0 nx̄ F F V 2c s0 0 1 1n2 2]] ] ]s 5 5 12 S 1K S 5 (21)s df D f 22 n¯5 xt (14) V /F nps dc c

` ` h 2 2n 3x 1 ]] ] ]]h5 5 12 S 1K S 5 (22)n s d2 f D f 2 33¯ ] ]M 5 t 5Et dt 5 , m 5Etx dt V /F n n ps d1 1 n cx̄ p
0 0

For a large number of cellsn (low degree of axial
2 2V tc c mixing) the distribution function (4) can be approxi-¯] ¯]5 x 12 S 1K S 5 x (15)s d2 f D f pF mated by a normal distribution:
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2 2
≠ x ≠x ≠ y
] ] ]A (12 S )D 2F 1 A S Dc f m 2 c f S 2≠z≠z ≠z

≠x ≠y
] ]5 A (12 S ) 1 A S (26)c f c f≠t ≠t

≠x ≠y
] ]A (12 S )D S D 1 A S D S D 2Fx(z 50)c f m c f S≠z 0 ≠z 0

5 0 (27)

≠x
]S D 5 0 (28)
≠z L

x(z,0)

QFig. 3. Chromatographic curves calculated using Eq. (4)—solid
]]]]], . . . . . . . 0# z #Dzlines and Eq. (23)—dotted lines: (a)n510, K 51; (b) n550, Dz A (12 S 1K S )5 . . . .Dz → 0D c f D fU

K 52; (c) n5100, K 53.D D . . . . . . . . . . . . . . . 0, . . . . . . . . . . . . . . . . . . . . . . .Dz , z # L

(29)

2 where A is column cross-section andz is longi-x p (12 pt) n ci F G] ]] ]]]5 exp 2 (23)]] tudinal coordinate along the flow tube.¯ Œx 22p /n
Eq. (26) describes the unsteady-state longitudinal

Fig. 3 shows chromatographic curves calculated for transport of a solute in a chromatographic tubing on
some values of mixing parametern using Eqs. (4) the basis of one-dimensional diffusion. Eqs. (27) and
and (23). As can be seen, the response curves(28) represent the boundary conditions for a closed
become more identical with growingn. channel, they can be obtained from the material

For the normal (Gauss) distribution (23): balances at the both ends of the tubing. Expression
(29) describes initial conditions.¯ ¯t 5 t, or t 5 t5t (24)max R max From Eqs. (26–29), the expressions for the mo-
ments of residence time distribution have beenand the distribution curve is always symmetric:
found:

h5 0 (25)
¯M 5 t 51/p 5 12 S 1K S (30)1 f D f

This distribution is often used in chromatography.
2 1 1 12For the distribution function (4), expressions (24) ] ] ] ]s 5 2 1 exp(2Pe) (31)S D2 2 2Pep Pe Peand (25) become valid only forn →`. For both

2distributions forn →`, s → 0. 12 2 2
]] ] ]S Dh5 11exp(2Pe)2 1 exp(2Pe)The cell model is simple to use, but in the form as 3 2 Pe Pep Pe

presently considered, it is not appropriate for de-
(32)scribing the axial dispersion in both phases. For

K 50 the model reduces to the conventional cellD with
model applied in chemical engineering to describe

LF /Acthe effect of axial mixing on reaction and counter- ]]]]]]Pe5 (33)
(12 S )D 1K S Dcurrent mass exchange processes [3–5]. f m D f S

Here Pe is the modified Peclet number, it defines the
3 .2. Diffusion model overall axial mixing rate in a chromatographic

column.
2The model schema is shown in Fig. 2, the As in the case of cell model, for Pe→`, s → 0

corresponding mathematical model has the following andh → 0. For both models with decreasing rate of
form: longitudinal mixing (with increasingn and Pe), the
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rate of approach to zero forh is much greater than number of ideally mixed cells under equilibrium
2for s . This enables the exact solutions for both conditions) may be different for two solutes con-

models to be approximated by a normal distribution. tained in a sample.
By comparing Eqs. (15) or (18) and (30), we see The analysis of formula (35) shows that increase

that the mean residence time (we can call it the exact inS can oppositely influence the efficiency, depend-f

retention time) is the same for cell and diffusion ing onl: the increase inS can increase or decreasef

models. Furthermore, it can be shown that the n.
expression for mean residence time: in dimensional When a solute has a low distribution ratio and/or
form—Eq. (18), in non-dimensional form—Eq. (15) the rate of axial mixing in the stationary phase is low
or (30), is valid for the non-equilibrium assumption and/or theD is high, l,1, andn . n , an increasem c

too. in S (for all other variables being constant) increasesf

As noted above, for low degree of longitudinal n. For an opposite casel.1 andn , n , an increasec

mixing, the solution of the diffusion model equation inS can decreasen.f

can be approximated by a normal distribution: WhenK 5D /D , l5 1 and n 5 n . WhenD S m c

K 50 or when the axial mixing in the stationary2 Dx p (12 pt) PeL phase is negligiblel50 and n 5 n /(12 S )5 nF G] ]]] ]]]]5 exp 2 (34) c f m]]¯ Œx 42 p /Pe (here n is the number of perfectly mixed cells inm

the mobile phase).3 .3. Parameter relationships
The separation of two solutes is commonly defined

by the resolutionR :SBy comparative analysis of cell and diffusion
models (in particular, Eqs. (21) and (31)), the ¯ ¯2(t 2 t )2 1

]]]R 5 (36)following relationship between their parameters has S W 1Wb1 b2been derived:
where W and W are the 4s base widths of theb1 b2n 5Pe/2
corresponding output curves.

This formula can be rewritten as: Replacing W in Eq. (36) with the expressionb
]Œn ¯W 5 4t / n obtained from Eqs. (18) and (19)c b]]]]n 5 (35) provides:11 S (l2 1)f

¯ ¯2(t 2 t )where 2 1
]]]]]R 5 (37)S ¯ ¯t t1 2LF /Ac ]] ]]4 1S D] ]]]n 5 n nc œ 1 œ 22Dm

¯Substituting the values fort from Eq. (18) andnis the number of perfectly mixed cells in mobile
from Eq. (35) after rearrangement gives:phase for the caseS 50;f

1 ]
]R 5 (a 2 1) nK D D y S œ cD S S 4]] ]]l5 5D D x KD1m m
]]]]]]]]]]]]]]3
12 S K]] ]] ]] ]]f D1
] ]f 11 S (l 2 1)1 11 S (l 2 1)g1 f 11 S (l 2 1)1a 11 S (l 2 1)gœ œ œ œf 1 f 2 f 1 f 2is a dimensionless number, characterising the ratio of 2S 2f

matter dispersion in stationary phase to that in (38)
mobile phase.

Formula (35) defines the relationship between the wherea is the separation factor commonly defined
process efficiency (number of theoretical plates,n) as the ratio of the distribution ratios of two solutes
and thermodynamic (distribution ratioK ) and hy- a 5K /K .D D 2 D 1

drodynamic (longitudinal mixing rates in stationary Eq. (38) expresses the contribution of separation
D and mobileD phases andS ) parameters. This factor and longitudinal mixing in the phases toS m f

relationship demonstrates that the number of theoret- resolution. The factora is influenced by the solvent
ical plates (more exact it were to be called the system selected. Longitudinal mixing in the phases is
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mainly determined by the energy input through a chromatographic curve using Eq. (18) and the rela-
force field set up by a coil planet centrifuge, by tionship:
tubing diameter and by mobile phase flow-rate.

`
mEq. (38) shows that increasingS (for all otherf k km 5Et x dt ¯DtOx t (42)k n i ivariables being constant) can increase or decrease
1

0resolution, depending on whetherl,1, or l.1.
Whenl andl approach 1, Eq. (38) reduces to: The main advantage of this way of measuring1 2

distribution ratio is it that the expression for mean
K1 D 1] residence time—Eq. (18), as mentioned above, is] ]]]]]]R 5 (a 21) n (39)S œ c4 12 S K (11a)f D 1 valid for the non-equilibrium assumption too.]] ]]]]1S 2f To estimaten and n , the peak height can be1 2

recommended. From Eqs. (4) and (6), we have theThis equation has the same form as the equation,
peak height as follows:derived by Conway and Ito [1]; the only difference is

x npin the plate (cell) number term:n in Eq. (39) n n21c ] ]]]5 (n 21) exp(12 n) (43)S Ddetermines the number of ideally mixed cells in the x̄ max (n 2 1)!
mobile phase forS 50 and is defined asn 5LF /f c Considering for largen the relationship for factorialA /2D , whereas by Conway and Ito, this termc m

]]] n21represents the number of theoretical plates. (n 2 1)!¯ 2p(n 21)(n 2 1) exp(12 n)œ
For preparative and production scale separations it

Eq. (43) can be simplified tois appropriate to estimate separation efficiency by
direct calculation of solute content for each eluting ]Œx np p nnpeak. From Eqs. (1)–(3), the relationship between ] ]]]] ]]5 ¯ (44)S D ]]] ]¯ Œx max 2p2p(n 2 1)œthe amount of a solute eluted by the timet, Q(t), and
process parameters can be derived as follows: This expression is identical to the peak height of the

n i21 Gauss distribution, Eq. (23). Using Eq. (44), the cellQ(t) (npt)
]] ]]]5 12 exp(2npt)O (40) number can be calculated from the measured peakQ (i 2 1)!1 ¯¯height (x /x ) and mean residence timet :n max

Using this equation, one can calculate the time- 2xn¯ ]n 5 2p t (45)F S D Gdependent composition of an eluting sample. x̄ max

5 . Conclusion4 . Parameter determination from
chromatograms

The chromatographic process is appropriate to
describe on the modified cell model basis usingnThe rates of mixing in the phases can be calcu-
determined by Eq. (35). Thus, the process modellated using Eq. (35) from known retained volume
involves eight dimensional parameters: distributionfraction of stationary phaseS and from measure-f
ratio K , longitudinal mixing rates in stationaryDments ofn andn , K andK taken directly from D S1 2 D 1 D 2
and mobile D phases, column lengthL, mobilechromatograms: m

phase flow-rateF, column volumeV , stationaryc
D 12 S n 2 nS f 1 2 phase volumeV and the amount of the soluteS] ]] ]]]]]5 DS D mD S n K 2 n K introducedQ. These eight parameters are reduced tom f 2 D 2 1 D 1

¯four: two dimensionalt 5V /F, x 5Q /V , and twoLF /A c c cc
]]]]]]5 (41) dimensionlessp andn defined by Eqs. (5) and (35).2 n (12 S 1l S )1 f 1 f The first two dimensional parameters can be calcu-

For experimental estimation of the distribution ratio, lated from operating datap andn can be taken from
it is appropriate to determineK from the whole chromatograms or calculated from known (ex-D
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¯perimentally determined or theoretically predicted) t mean residence (retention) time of solute
other process parameters. Eq. (35) enables us to in a column, dimensionless
estimate the contribution of longitudinal mixing in V column volume, mlc

both phases to overall dispersion of a solute in the V volume of mobile phase in a column, mlm

column. This approach allows these two phenomena V volume of stationary phase retained in aS

(longitudinal mixing in mobile and stationary phases) column, ml
to be examined separately, to see their individual V total retention volume, mlR

effects on the chromatographic process. W 4s base width of a chromatographicb

The model developed can be applied for CCC peak, s
process simulation when the mass transfer rate x, y concentration of solute in mobile and
between the phases is large enough to be ignored. In stationary phases, g/ml
general, it is applicable to symmetrical chromato- z longitudinal coordinate along a flow
graphic peaks. For low mass transfer, the presented tube, cm
model must be extended to include the mass transfert time, s

¯rate. Then it will be able to describe the asymmetri- t mean residence (retention) time of solute
cal peaks as well. in a column, s

t mean residence time of mobile phase inc

a column, when it is filled with mobile
6 . Nomenclature phase only, s

2A column cross-section, cmc

d column diameter, cm A cknowledgements
2D , D axial dispersion coefficient, cm /sm S

F flow-rate of mobile phase, ml /s This work is supported by a grant received for the
K distribution ratio (partition coefficient), realisation of Project INTAS 00–00782.D

dimensionless
i current cell number, dimensionless
L column length, cm R eferences
m kth moment of distribution function,k
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